Refine Your Search

Topic

Author

Search Results

Technical Paper

CFD Simulation of External Distribution of Tail-Pipe Emissions Around a Stationary Vehicle Under Light Tail-Wind Conditions

2014-04-01
2014-01-0586
A potentially important, but inadequately studied, source of passengers' exposure to pollutants when a road vehicle is stationary, with an idling engine, results from the ingestion of a vehicle's own exhaust into the passenger compartment through the HVAC intake. We developed and applied a method to determine the fraction of a vehicle's exhaust entering the cabin by this route. Further the influence of three parameters: ambient tail-wind speed, vehicle ground clearance and tail pipe angle, is assessed. The study applies Computational Fluid Dynamic (CFD) simulation to the distribution of exhaust gasses around a vehicle motorized with a 2.2 liter Diesel engine. The simulation employs efficient meshing techniques and realistic loading conditions to develop a general knowledge of the distribution of the gasses in order to inform engineering design.
Journal Article

A Computational Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in the Design Process

2013-05-13
2013-01-1933
For most car manufacturers, wind noise from the greenhouse region has become the dominant high frequency noise contributor at highway speeds. Addressing this wind noise issue using experimental procedures involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process. Previously, a computational approach that couples an unsteady computational fluid dynamics solver (based on a Lattice Boltzmann method) to a Statistical Energy Analysis (SEA) solver had been validated for predicting the noise contribution from the side mirrors. This paper presents the use of this computational approach to predict the vehicle interior noise from the windshield wipers, so that different wiper placement options can be evaluated early in the design process before the surface is frozen.
Journal Article

Evaluation of the Aerodynamic and Aeroacoustic Response of a Vehicle to Transient Flow Conditions

2013-04-08
2013-01-1250
A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of roadside obstacles. Unsteady effects occurring in the sideglass region of a vehicle are particularly relevant to wind noise. This is a region close to the driver and dominated by separated flow structures from the A-pillar and door mirrors, which are sensitive to unsteadiness in the onset flow. Since the sideglass region is of particular aeroacoustic importance, the paper seeks to determine what impact these unsteady effects have on the sources of aeroacoustic noise as measured inside the passenger compartment, in addition to the flow structures in this region. Data presented were obtained during on-road measurement campaigns using two instrumented vehicles, as well as from aeroacoustic wind tunnel tests.
Journal Article

Simulation of Rear and Body Side Vehicle Soiling by Road Sprays Using Transient Particle Tracking

2013-04-08
2013-01-1256
Numerical simulations have proven to be effective tools for the aerodynamic design of vehicles, helping to reduce drag, improve cooling flows, and balance aerodynamic lift. Aeroacoustic simulations can also be performed; these can give guidance on how design changes may affect the noise level within the cabin. However, later in the development process it may be discovered that soiling management issues, for example, necessitate design changes. These may have adverse consequences for noise or require extra expense in the form of technological counter-measures (i.e. hydrophobic glass). Performing soiling simulations can allow these potential issues to be addressed earlier in the design process. One of the areas where simulation can be particularly useful is in the prediction of soiling due to wheel spray.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Technical Paper

Numerical Study of DMF and Gasoline Spray and Mixture Preparation in a GDI Engine

2013-04-08
2013-01-1592
2, 5-Dimethylfuran (DMF) has been receiving increasing interest as a potential alternative fuel to fossil fuels, owing to the recent development of new production technology. However, the influence of DMF properties on the in-cylinder fuel spray and its evaporation, subsequent combustion processes as well as emission formation in current gasoline direct injection (GDI) engines is still not well understood, due to the lack of comprehensive understanding of its physical and chemical characteristics. To better understand the spray characteristics of DMF and its application to the IC engine, the fuel sprays of DMF and gasoline were investigated by experimental and computational methods. The shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques were used for measuring spray penetration, droplet velocity and size distribution of both fuels.
Technical Paper

Engine Test Data Quality Requirements for Model Based Calibration: A Testing and Development Efficiency Opportunity

2013-04-08
2013-01-0351
This paper documents some of the findings from a joint JLR and AVL project which was conducted at the JLR Gaydon test facility in the UK. A testing and development efficiency concept is presented and test data quality is identified as a key factor. In support of this methods are proposed to correctly measure and set targets for data quality with high confidence. An illustrative example is presented involving a Diesel passenger car calibration process which requires response surface models (RSMs) of key engine measured quantities e.g. engine-out emissions and fuel consumption. Methods are proposed that attempt to quantify the relationships between RSM statistical model quality metrics, test data variability measures and design of experiment (DOE) formulation. The methods are tested using simulated and real test data.
Journal Article

Modelling A-Pillar Water Overflow: Developing CFD and Experimental Methods

2012-04-16
2012-01-0588
Water accumulating on a vehicle's wind screen, driven over the A-pillar by a combination of aerodynamic forces and the action of the windscreen wipers, can be a significant impediment to driver vision. Surface water film, or streams, persisting in key vision areas of the side glass can impair the drivers' ability to see clearly through to the door mirror, and laterally onto junctions. Common countermeasures include: water management channels and hydrophobic glass coatings. Water management channels have both design and wind noise implications. Hydrophobic coatings entail significant cost. In order to manage this design optimisation issue a water film and wiper effect model has been developed in collaboration with Jaguar Land Rover, extending the capabilities of the PowerFLOW CFD software. This is complimented by a wind-tunnel based test method for development and validation. The paper presents the progress made to date.
Technical Paper

Assessment of a Vehicle's Transient Aerodynamic Response

2012-04-16
2012-01-0449
A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, due to the unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of roadside obstacles. There is increasing concern about potential differences between the steady flow conditions used for development and the transient conditions that occur on the road. This paper seeks to determine if measurements made under steady state conditions can be used to predict the aerodynamic behaviour of a vehicle on road in a gusty environment. The project has included measurements in two full size wind tunnels, including using the Pininfarina TGS, steady-state and transient inlet simulations in Exa Powerflow, and a campaign of testing on-road and on-track. The particular focus of this paper is on steady wind tunnel measurements and on-road tests, representing the most established development environment and the environment experienced by the customer, respectively.
Technical Paper

Measurement of Exterior Surface Pressures and Interior Cabin Noise in Response to Vehicle Form Changes

2011-05-17
2011-01-1618
Automotive manufactures demand early assessment of vehicle form design against wind noise attribute to eliminate any engineering waste induced by late design changes. To achieve such an assessment, it is necessary to determine a measurable quantity which is able to represent vehicle form changes, and to understand the relationship between the quantity and vehicle interior cabin noise. This paper reports experimental measurements of vehicle exterior surface pressure and the interior cabin noise level in response to the change of exterior rear view mirror shape. Measurements show that exterior surface pressure on vehicle greenhouse panel is a primary factor of wind noise load to the interior cabin noise; they can be used in preliminary wind noise ranking. Care should be taken when using them in ranking vehicle form wind noise performance. It has been observed that a change in surface pressure on the front side window does not necessarily lead to a change in the interior cabin noise.
Technical Paper

SEA Wind Noise Load Case for Ranking Vehicle Form Changes

2011-05-17
2011-01-1707
Vehicle manufacturers demand early design assessment of vehicle wind noise attribute so as to eliminate engineering waste induced by late design changes. Vehicle wind noise attribute can be simulated with a Statistical Energy Analysis (SEA) model using exterior surface turbulence pressure on the vehicle greenhouse panel as the wind noise load. One important application of SEA wind noise model is the wind noise assessment for vehicle form design. Vehicle form optimization for wind noise plays an important role in lightweight vehicle architecture, since that reduction in the wind noise load will compensate the loss of vehicle body acoustic attenuation caused by down-gauge glazing and body panels. In this paper, two SEA wind noise load cases currently used in vehicle SEA wind noise modeling have been analyzed and evaluated against vehicle measurements.
Journal Article

The Effects of Unsteady On-Road Flow Conditions on Cabin Noise: Spectral and Geometric Dependence

2011-04-12
2011-01-0159
The in-cabin sound pressure level response of a vehicle in yawed wind conditions can differ significantly between the smooth flow conditions of the aeroacoustic wind tunnel and the higher turbulence, transient flow conditions experienced on the road. Previous research has shown that under low turbulence conditions there is close agreement between the variation with yaw of in-cabin sound pressure level on the road and in the wind tunnel. However, under transient conditions, sound pressure levels on the road were found to show a smaller increase due to yaw than predicted by the wind tunnel, specifically near the leeward sideglass region. The research presented here investigates the links between transient flow and aeroacoustics. The effect of small geometry changes upon the aeroacoustic response of the vehicle has been investigated.
Journal Article

Simulation of Rear Glass and Body Side Vehicle Soiling by Road Sprays

2011-04-12
2011-01-0173
Numerical simulation of aerodynamics for vehicle development is used to meet a wide range of performance targets, including aerodynamic drag for fuel efficiency, cooling flow rates, and aerodynamic lift for vehicle handling. The aerodynamic flow field can also be used to compute the advection of small particles such as water droplets, dust, dirt, sand, etc., released into the flow domain, including the effects of mass, gravity, and the forces acting on the particles by the airflow. Previous efforts in this topic have considered the water sprays ejected by rotating wheels when driving on a wet road. The road spray carries dirt particles and can obscure the side and rear glazing. In this study, road sprays are considered in which the effects of additional water droplets resulting from splashing and dripping of particles from the wheel house and rear under body are added to help understand the patterns of dirt film accumulation on the side glass and rear glass.
Journal Article

CFD-based Modelling of Flow Conditions Capable of Inducing Hood Flutter

2010-04-12
2010-01-1011
This paper presents a methodology for simulating Fluid Structure Interaction (FSI) for a typical vehicle bonnet (hood) under a range of onset flow conditions. The hood was chosen for this study, as it is one of the panels most prone to vibration; particularly given the trend to make vehicle panels lighter. Among the worst-case scenarios for inducing vibration is a panel being subjected to turbulent flow from vehicle wakes, and the sudden peak loads caused by emerging from a vehicle wake. This last case is typical of a passing manoeuvre, with the vehicle suddenly transitioning from being immersed in the wake of the leading vehicle, to being fully exposed to the free-stream flow. The transient flowfield was simulated for a range of onset flow conditions that could potentially be experienced on the open road, which may cause substantial vibration of susceptible vehicle panels.
Technical Paper

The Effects of Unsteady On-Road Flow Conditions on Cabin Noise

2010-04-12
2010-01-0289
At higher speeds aerodynamic noise tends to dominate the overall noise inside the passenger compartment. Large-scale turbulent conditions experienced on the road can generate different noise characteristics from those under steady-state conditions experienced in an acoustic wind tunnel. The objective of this research is to assess the relationship between on-road flow conditions and the sound pressure level in the cabin. This research, covering links between the unsteady airflow around the vehicle and aeroacoustic effects, is a natural progression from previous aerodynamic studies. On-road testing was undertaken using a current production vehicle equipped with a mobile data logging system. Testing was carried out on major roads at typical highway speeds, where wind noise is very significant. Of particular interest are high-yaw conditions, which can lead to a blustering phenomenon.
Technical Paper

Effect of Setting Velocity on Self-Piercing Riveting Process and Joint Behaviour for Automotive Applications

2010-04-12
2010-01-0966
The increased application of lightweight materials, such as aluminium has initiated many investigations into new joining techniques for aluminium alloys. As a result, Self-piercing riveting (SPR) was introduced into the automotive industry as the major production process to join aluminium sheet body structures. Although both hydraulic and servo types of SPR equipment are used by the industry, the servo type is most commonly used in a volume production environment. This type uses stored rotational inertia to set the rivet. The initial rotational velocity of the mass dictates the setting force and hence the tool is described as velocity-controlled. A study was therefore conducted to examine the effect of setting velocity on the process including tooling and joint performance. It was found that the setting velocity would have a significant effect on tooling life. Over 80kN force could be introduced into the tooling depending on selection of the setting velocity.
Technical Paper

Recent Advances in Powertrain Sound Quality Hardware Tuning Devices and Perspectives on Future Advances

2009-05-19
2009-01-2192
Over the past decade there have been significant advances made in the technology used to engineer Powertrain Sound Quality into automobiles. These have included exhaust system technologies incorporating active and semi-active valves, intake system technologies involving passive and direct feedback devices, and technologies aimed at tuning the structure-borne content of vehicle interior sound. All of these technologies have been deployed to complement the traditional control of NVH issues through the enhancement of Powertrain Sound Quality. The aim of this paper is to provide an historical review of the recent industry-wide advances made in these technologies and to provide the author's perspective on what issues have been addressed and what opportunities have been delivered.
Technical Paper

SEA Modeling of Vehicle Wind Noise and Load Case Representation

2007-05-15
2007-01-2304
Vehicle wind noise is becoming increasingly important to customer satisfaction. Early wind noise assessment is critical to get things right during the early design phase. In this paper, SEA modeling technique is used to predict vehicle interior noise caused by the exterior turbulence. Measured surface turbulence pressures over vehicle greenhouse panels are applied as wind noise load. SEA representation of wind noise load case is investigated. It has been found that current SEA wind noise load case over-estimates at frequencies below window glass coincident frequency. A new concept of noise source pole index is introduced and a new wind noise load coupling has been developed. Comparison with vehicle wind tunnel measurements shows that the proposed load case significantly improved prediction accuracy.
Technical Paper

CFD Simulation of Side Glass Surface Noise Spectra for a Bluff SUV

2006-04-03
2006-01-0137
Simulation of local flow structures in the A-pillar/side glass region of bluff SUV geometries, typical of Land Rover vehicles, presents a considerable challenge. Features such as relatively tight A-pillar radii and upright windscreens produce flows that are difficult to simulate. However, the usefulness of aerodynamics simulations in the early assessment of wind noise depends particularly on the local accuracy obtained in this region. This paper extends work previously published by the author(1) with additional data and analysis. An extended review of the relevant published literature is also provided. Then the degree to which a commercial Lattice-Boltzman solver (Exa PowerFLOW™) is currently able to capture both the local flow structure and surface pressure distribution (both time averaged and unsteady) is evaluated. Influential factors in the simulation are shown to be spatial resolution, turbulence and boundary layer modelling.
X